Transforming growth factor α transforms astrocytes to a growth-supportive phenotype after spinal cord injury.

نویسندگان

  • Robin E White
  • Meghan Rao
  • John C Gensel
  • Dana M McTigue
  • Brian K Kaspar
  • Lyn B Jakeman
چکیده

Astrocytes are both detrimental and beneficial for repair and recovery after spinal cord injury (SCI). These dynamic cells are primary contributors to the growth-inhibitory glial scar, yet they are also neuroprotective and can form growth-supportive bridges on which axons traverse. We have shown that intrathecal administration of transforming growth factor α (TGFα) to the contused mouse spinal cord can enhance astrocyte infiltration and axonal growth within the injury site, but the mechanisms of these effects are not well understood. The present studies demonstrate that the epidermal growth factor receptor (EGFR) is upregulated primarily by astrocytes and glial progenitors early after SCI. TGFα directly activates the EGFR on these cells in vitro, inducing their proliferation, migration, and transformation to a phenotype that supports robust neurite outgrowth. Overexpression of TGFα in vivo by intraparenchymal adeno-associated virus injection adjacent to the injury site enhances cell proliferation, alters astrocyte distribution, and facilitates increased axonal penetration at the rostral lesion border. To determine whether endogenous EGFR activation is required after injury, SCI was also performed on Velvet (C57BL/6J-Egfr(Vel)/J) mice, a mutant strain with defective EGFR activity. The affected mice exhibited malformed glial borders, larger lesions, and impaired recovery of function, indicating that intrinsic EGFR activation is necessary for neuroprotection and normal glial scar formation after SCI. By further stimulating precursor proliferation and modifying glial activation to promote a growth-permissive environment, controlled stimulation of EGFR at the lesion border may be considered in the context of future strategies to enhance endogenous cellular repair after injury.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P144: Therapeutic Application of Mesenchymal Stem Cells in Spinal Cord Injury Treatment

Spinal cord injury (SCI) is a neurologic disorder that have a significant impact on quality of life, life expectancy, and economic burden. SCI leads to irreversible neuronal loss and ultimately leads to paralysis. Mesenchymal stem cells (MSCs) are a promising source for cellular therapy because they have possessed the capacity of self-renewal and differentiation to several distinct mesenchymal ...

متن کامل

P 116: The Effect of Galectin-3 and Lanthionine Ketimine Ester in Neural Recovery after Spinal Cord Injury

Spinal cord injury (SCI) is a trauma that disturbs motor, sensitive and autonomic function and directly impacts the quality of life. After physical damage, releasing of pro-inflammatory proteins and cytokines occurs and with collaboration of immune system cells, an immune response begins in the brain tissue. The result of neuroinflammation is edema, apoptosis and release of axonal growth inhibi...

متن کامل

IRF8 Is a Critical Transcription Factor for Transforming Microglia into a Reactive Phenotype

Microglia become activated by multiple types of damage in the nervous system and play essential roles in neuronal pathologies. However, how microglia transform into reactive phenotypes is poorly understood. Here, we identify the transcription factor interferon regulatory factor 8 (IRF8) as a critical regulator of reactive microglia. Within the spinal cord, IRF8 expression was normally low; howe...

متن کامل

Effect of Intrathecal Anti-Fibroblast Growth Factor-2 Antibodies on the Mechanical Allodynia and Activation of Spinal Cord Astrocytes in Rats.

AIM To investigate the effect of intrathecal anti-fibroblast growth factor-2 (FGF-2) antibodies on the mechanical allodynia and activation of spinal cord astrocytes in a rat model of neuropathic pain. MATERIAL AND METHODS Forty male Sprague-Dawley rats were randomly divided into 4 groups (Each group=10 rats). Group A: Spared nerve injury (SNI) model and intrathecal phosphate-buffered saline (...

متن کامل

Therapeutic time window for the effects of erythropoietin on astrogliosis and neurite outgrowth in an in vitro model of spinal cord injury

BACKGROUND The objective of this study was to investigate the underlying molecular mechanisms and the therapeutic time window for preventing astrogliosis with erythropoietin (EPO) treatment after in vitro modeled spinal cord injury (SCI). METHODS Cultured rat spinal cord astrocytes were treated with kainate and scratching to generate an in vitro model of SCI. EPO (100U/mL or 300U/mL) was adde...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 31 42  شماره 

صفحات  -

تاریخ انتشار 2011